Navigation:
Use the right arrow key to step forward through presentation.
Use the left arrow key to step backwards through presentation.
Use the b key to return to the beginning of the presentation.
Use the e key to go to the end of the presentation.

A trig substitution

We wish to compute \[\int\frac{\sqrt{x^2-4}}x\, dx\]

The substitution to use is \(x=2\sec\theta\).

This substitution depends on the Pythagorean identity \[ 1 + \tan^2\theta = \sec^2\theta \]

or \[ \sec^2\theta - 1 = \tan^2\theta \]

So \[ x^2 - 4 = (2\sec\theta)^2 - 4\]

\[ = 4\sec^2\theta - 4 = 4(\sec^2\theta-1) \]

\[ = 4\tan^2\theta \]

So \[ \sqrt{x^2-4} = \sqrt{(2\sec\theta)^2 - 4} \]

\[ = \sqrt{4\tan^2\theta} = 2\tan\theta \]

(ignoring the \(\pm\)).

Now \[ \frac{d}{d\theta}\sec\theta = \sec\theta\tan\theta \]

So we may write \[ d \sec\theta = \sec\theta\tan\theta \, d\theta. \]

So we can change variables in the integral:

\[ \definecolor{blue}{RGB}{0,0,255} \int\frac{\sqrt{{\color{blue}x}^2-4}}{\color{blue}x}\, d{\color{blue}x} = \int\frac{\sqrt{ ({\color{blue}2\sec\theta})^2 - 4 }}{{\color{blue}2\sec\theta}} \, d \,{\color{blue}2\sec\theta}. \]

\[ = \int\frac{\sqrt{4\tan^2\theta}}{2\sec\theta}\, 2\sec\theta\tan\theta \, d\theta \]

\[ = \int\frac{2\tan\theta}{2\sec\theta}\, 2\sec\theta\tan\theta\, d\theta \]

\[ = \int 2 \tan^2\theta \, d\theta. \]

We now have to find the integral \[\int 2\tan^2\theta\, d\theta.\]

But we can write \[ \tan^2\theta = \sec^2\theta - 1\]

So \[ \int 2\tan^2\theta \, d\theta = 2\int\tan^2\theta\, d\theta \]

\[ = 2\int(\sec^2\theta - 1)\, d\theta \]

\[ = 2(\tan\theta - \theta) + C. \]

So using \( x = 2\sec\theta \), we have found \[ \int\frac{\sqrt{x^2-4}}x\, dx = \int 2\tan^2\theta\, d\theta = 2(\tan\theta - \theta) + C \]

So we have found the integral, but we must change variables back to \(x\).

We began with \( x = 2\sec\theta \), but what is \(\tan\theta\) in terms of \(x\)?

We can solve this problem by thinking of a right triangle:

\(\theta\) \(2\) \(x\)

This should work since \[ \sec\theta = \frac{\text{hyp}}{\text{adj}} = \frac{x}{2}. \]

But we need \(\tan\theta\).

Use Pythagorus to find the missing side of the triangle.

\(\theta\) \(2\) \(x\) \(y\)

So \(2^2 + y^2 = x^2\) which gives \(y=\sqrt{x^2-4}.\)

So we have:

\(\theta\) \(2\) \(x\) \(\sqrt{x^2-4}\)

So \[\tan\theta = \frac{\text{opp}}{\text{adj}} = \frac{\sqrt{x^2-4}}{2}\]

We also need to convert \(\theta\) back to \(x\).

Since \[ \sec\theta = \frac x2\]

we might write \[ \theta = \sec^{-1}(x/2)\]

But this function might not be convenient (it's not on typical calculator keyboards).

So instead write \[ \cos\theta = \frac 2x\]

and then \[ \theta = \cos^{-1}(2/x)\]

So we finally can write

\[ \int\frac{\sqrt{x^2-4}}x\, dx = \int 2\tan^2\theta\, d\theta = 2(\tan\theta - \theta) + C \]

\[ = 2\left(\frac{\sqrt{x^2-4}}{2} - \cos^{-1}(2/x)\right) + C\]

\[ = \sqrt{x^2-4} - 2\cos^{-1}(2/x) + C\]

So we are done.